Friday, June 28, 2024

Hannes Alfvén's Galactic Circuit

Hannes Alfvén, who won the Nobel Price in physics in 1970, proposed in his time an electric model of galaxies. According to this model, there should be an electric current drawn in at the plane of galaxies, and pushed out through the poles at their central axis.

Much of the current pushed out at the poles goes back down to the plane, where it reenters the galaxy, thereby forming what he termed a galactic circuit. Positive ions are drawn in through the plane, and pushed out at the poles. Electrons and negative ions go the other way.

Recent confirmation

While this was viewed as rather speculative back in his days, recent mappings of magnetic fields in and around our galaxy proves him right. The magnetic structures observed are indicative of a large current moving precisely as predicted by Alfvén.

This means that every galaxy in the universe forms an electric node with Alfvén's characteristics.

Pearls on a string

From other observations, we know that galaxies tend to line up like pearls on a string. This indicates that they are connected, presumably by a plasma current that drives the entire system.

But every node must necessarily leak some energy into space, so we are again faced with the need to conjure up an energy supply. My theory is that every star is a contributor to the galactic current, so it is the stars in the galaxies that supply the energy to compensate for leakage. Every galaxy is a giant electric accelerator. They are the amplifiers of galactic currents.

800 nasa structure renderin2.jpg

By Credit: NASA's Goddard Space Flight Center - http://www.nasa.gov/mission_pages/GLAST/news/new-structure.html, Public Domain, Link

Thursday, June 27, 2024

How Gravity Differs from the Electrostatic Force

The electrostatic force and gravity have a number of differences that seem to indicate that these forces must be largely unrelated. However, on closer inspection we find that these differences are fully accounted for in a model where gravity is due to an imbalance in the electrostatic force.

Surface phenomenon vs universal phenomenon

The electrostatic force is always calculated from the surface of objects. This is because this phenomenon is due to an excess or deficiency in electric charge. Electrons stick to certain materials, and they can be rubbed off from other materials.

This happens exclusively on the surface of these materials. Hence, the need to calculate this force from the surface of materials rather than their center.

Gravity on the other hand, if due to an imbalance in the electrostatic force, must be calculated from the center of bodies. This is because an imbalance of this sort is additive. Every atom has this imbalance, so every atom has to be accounted for.

Newton's shell theorem proves that this must be so.

Dependent vs independent of material types

The electrostatic force acts differently on different types of materials. The chemical and physical properties of materials take part in determining the strength of this force.

This is due to the need for charge imbalances in order for this force to work. Materials that resist charge imbalances are therefore less affected by this force than other materials.

However, an imbalance in the electrostatic force will exist regardless of material types. If gravity is due to such an imbalance, all materials will attract each other.

It doesn't matter if a material resists charge imbalances, because the addition or subtraction of electrons has nothing to do with the inherent imbalance that exists in all materials. All that matters is the total number of electrons and protons involved.

Shielding vs no shielding

The electrostatic force induces charge imbalances on the surface of materials. This serves in turn as shields of various qualities. However, there's no way to shield a universal imbalance, because such imbalances are additive. It doesn't depend on the type of materials used.

Any gravity "consumed" by a concrete floor will be matched by gravity "produced" by the same floor. So, the floor doesn't take away any gravity from us as we sit upstairs, and this goes for any floor regardless of material used.

Conclusion

Gravity, if due to an imbalance in the electrostatic force, will result in a universally attracting force that acts from the center of objects, independent of material types. So, there's no reason to dismiss this idea simply because the electrostatic force acts differently.

Gravity vs the electrostatic force
Gravity vs the electrostatic force

Thursday, June 13, 2024

Magnetic Field Strengths of Planets

The conventional view of planetary magnetic fields is that they are the result of liquid metallic currents that move like dynamos deep inside the cores of planets.

The liquid metallic currents are driven by internal mechanisms that can only be inferred from their resulting magnetic fields.

Predictive vs non-predictive theories

This is an example of a non-predictive theory where only invisible and hypothetical inferences are possible. Nothing visible or directly measurable can be inferred. The truth of the theory cannot be determined. It rests fully on trust in the original hypothesis.

In contrast we have the theory supported in my book where we can infer planetary magnetic fields by observing the atmospheres, wind speeds and rotation speeds of planets.

The thickness and the overall rotational speed of a planet's atmosphere tells us roughly how strong the planet's magnetic field is. Our theory is therefore predictive and testable. All we need to do in order to give an estimate of a planet's magnetic field is to observe its visible characteristics.

Hollow or liquid core

We know from measurements on Earth that planetary magnetic fields appear to come from deep down. However, this doesn't mean that this must be the source of it. It merely means that our planet needs to have a fluid core capable of generating a magnetic field in harmony with external forces applied to it from the above atmosphere.

The core can be a metallic liquid, or it can be a plasma filled hollow. As long as it is something that responds harmonically to external magnetic inputs, we're fine.

Plasma currents

The central idea in our theory is that the magnetic fields of planets are created by charged gases in motion, aka plasma currents. Since it's well established that all atmospheres are charged, especially at high altitudes, we can say that all planets with an atmosphere have plasma currents moving around them.

The jet stream and Earth's magnetic field
The jet stream and Earth's magnetic field

High altitude winds are visible example of plasma currents. We cannot see the charges moving about, but we know that they are there, and we know that they generate magnetic fields when they move.

The plasma currents are in turn driven externally by the Birkeland currents that also produce the auroras at the poles. Everything is in the end connected to the Sun and the plasma current that drives the entire solar system.

Testing our theory

With this in mind, we can go on to match observations with facts to see if we can indeed predict a planet's magnetic field strength by simple observations:

  • Mercury has no atmosphere, and presumably a small and inactive hollow. This explains why Mercury has a very weak magnetic field.
  • Venus has a thick atmosphere that moves at high speeds. But the planet is rotating very slowly, so there's little contribution to the overall speed form the planet itself. The slow rotational speed of Venus is also an indication of little to no contribution from any internal atmosphere or liquid metallic core. This explains why Venus has a weak magnetic field despite its thick atmosphere and strong winds.
  • Earth rotates a good deal faster than Venus, and it has a jet stream and an active internal current. This explains why Earth has the strongest magnetic field in the inner solar system.
  • Mars is similar to Mercury, but less extreme. It has a thin atmosphere and probably a slightly larger hollow. This explains why Mars has a magnetic field that's stronger than Mercury's but weaker than Earth's.
  • Jupiter is spinning very fast on its axis, and it has a thick atmosphere. Its large and diffuse core is likely to be very active. It's therefore no surprise to learn that Jupiter has the strongest magnetic field of all planets in the solar system.
  • Saturn is similar to Jupiter, but with a thinner atmosphere and slower spin. Its magnetic field comes in as the second strongest in the solar system.
  • Uranus has more than two poles, indicating that there's a mismatch between the internal plasma current and the external current. The strength of its magnetic fields are less than Saturn.
  • Neptune is similar to Uranus, and has for this reason magnetic fields similar to it.

Conclusion

The plasma model for planetary magnetic fields can be used to make predictions related to the strength of magnetic fields. This is unlike the dynamo hypothesis which can only be used retrospectively. The dynamo can only be inferred from measurements of the magnetic field. It cannot be used to predict anything, and is therefore useless as a predictive model.

The fact that the plasma model gives us correct predictions based on observations of atmospheres, wind speeds and rotation speeds of planets, makes it the better model in terms of usefulness.

Wednesday, June 12, 2024

Whale Bones in the Sahara Desert

There are whale bones in the Sahara desert. Whale bones have also been found in Peru and Chile.

At first glance, this may look like evidence for a great flood. However, the bones are ancient. They don't belong to animals that exist today. By some estimates they are as much as 43 million years old, so if the whales died due to a flood it's not the flood mentioned in the Bible, nor is this evidence in support of Peter Warlow's tippe-top theory.

Rather, this supports the position that Earth is an expanding planet that was largely covered by shallow seas as recently as 43 million years ago.

The whales died in these seas, or they were beached next to them. As our planet continued its expansion, their remains grew increasingly remote from water, until today where they are found far inland.

Expanding Earth seen from the South Pole
Expanding Earth seen from the South Pole

Friday, June 7, 2024

How Gravity Relates to the Electric Force

Gravity is due to an imbalance in the electric force which makes electric repulsion a tiny bit weaker than electric attraction.

This means that Newton's law is in fact a variation on Coulomb's law, and we should therefore be able to establish a formal relationship between the two.

It's not enough to say that G is a proxy for k, and that M1 and M2 represent total charge while q1 and q2 represent net charge. However, it's a good starting point.

As we will see, the relationship between Coulomb's law and Newton's universal law of gravity can be formally quantified and explained.

Electric force and gravity
Coulomb's law compared to Newton's law

How G relates to k

First off, we need to realize that the two constants k and G are related in that they both transform an intermediate result into force. Both of the above equations yield result in Newton, and this is only because of k and G.

With the only other difference between the two equations being q1 and q2 vs M1 and M2, we should be able to find a relationship between these quantities simply by dividing G by k.

k and G have been measured to be:

k = 8.98755 10^9 kg m^3/C^2s^2 , where C is charge expressed in Coulomb

G = 6.6743 10^-11 m^3/kg s^2

Dividing G by k we get:

G/k = (6.6743 10^-11)/(8.98755 10^9) C^2/kg^2

G/k = 7.426 10^-21 C^2/kg^2

How G/k relates to inherent charge imbalance in matter

The thing to note about this result is that we have C squared divided by kg squared.

The reason for this is that we naturally get a square if we multiply q1 with q2 or M1 with M2. To get a result that relates one mass quantity to one charge quantity, we need to take the square root of G/k.

This yields the magnitude of the electric imbalance inherent in neutral matter. It relates matter expressed in kg to its inherent charge imbalance expressed in C, and we will call this value p for short:

p = (G/k)^1/2

p = 8.618 10^-11 C/kg

What this means

We can now use p to transform matter measured in kg into charge imbalance measured in C. For every 1 kg of matter, we have an imbalance of 8.618 10^-11 C.

If we put two neutral 1 kg masses next to each other, with only 1 mm of separation, we get a force corresponding to 0.067 mN.

To get a corresponding force by simply charging the two masses we need to add 538 million electrons to one of the masses and subtract 538 million electrons from the other mass.

This may sound like a lot, but there are 3.055 10^24 atoms in a kg of gold, and each atom of gold has 79 electrons. The total number of electrons corresponding to 1 kg of matter is therefore roughly 2.4 10^20 million electrons.

The imbalance in the electric force caused by 1 kg of matter is in other word a mere 5 10^-15 percent of the total number of electrons present in the material.

This means that a measurement in an electric lab has to be precise to 17 digits after the decimal point to even start registering the effect of gravity. No wonder then that gravity has never been measured in such a laboratory.

Our proxy is a variable

If gravity is due to a minuscule imbalance in the electric force, it's likely to be dependent on other electric factors as well, such as capacitance and charge. This makes p a variable rather than a constant, and by extension we get that G is a variable too.

It follows that two bodies don't necessarily have the same value for p. A small body with little capacitance will have a different p than a large body with a lot of capacitance.

From observations we can further infer that it is the large bodies that have the greatest values for p, because large bodies seem to be more gravitationally strong, relative to their sizes, than small bodies.

With this in mind we can put together a modified version of Newton's formula as follows.

Newton's formula expressed in terms of k and p

It's now possible to convert mass expressed in kg into a charge imbalance expressed in C. By multiplying p with M we get units corresponding to point charges and we can therefore express Newton's law as follows:

Newton's law expressed in terms of k and p
Newton's law expressed in terms of k and p

Instead of G, we get p1 and p2 which relate the masses M1 and M2 to their respective charge imbalances.

With this transformation in place, Coulomb's law can be used for both gravity and the electric force. These two forces have thus been formally joined together, leaving us with no need for the gravitational constant G.