Tuesday, December 3, 2019

Gravity and light

According to our theory, gravity is a force that operates on neutral particles made up of dielectric matter. Also according to our theory, photons are compact assemblies of 3 positive and 3 negative particle quanta. This makes them a special type of dielectric matter, and hence sensitive to gravity. A photon travelling past a massive body will experience a tug. There will be a tiny angular acceleration. This will have no impact on the energy of the photon, nor will it have any impact on its speed. It will simply make the photon curve around the object.

From theory, we can also note that photons moving in towards a massive body retain their energy, as do photons moving away from such a body. While massive bodies tug on incoming and outgoing photons, gravity does not change their energy. However, a local observer on the surface of a massive body will register the energy of photons as greater than what is reported for the same photons by an observer in space.

To understand this, we have to keep in mind that the aether is made up of a mix of neutrinos and photons. Since gravity pulls on photons, but not on neutrinos, we must conclude that the aether close to massive bodies are richer in photons than the aether farther away. This is because gravity pulls on photons, but not on neutrinos. Neutrinos are not dielectric while photons are.

With more photons in the aether, there must be correspondingly fewer neutrinos. The aether is after all so dense that no particle can be introduced without other particles being expelled. This in turn affects the electric force close to massive bodies. Observed from space, the electric force is reduced due to fewer available neutrinos.

With a reduced electric force, the size of electrons and protons goes down. The reduced number of neutrinos inside these particles reduce their internal pressure, and hence their diameters and circumferences.

All of this can be detected by an observer in space. However, it cannot in any way be detected locally. This is because a reduced circumference of the electron corresponds to a reduction in the local unit length, and hence also a speeding up of local clocks.

Since everything in our physics relates back to particle quanta with 3 dimensions, size and texture, all measurements related to speeds, distances, forces and energies remains constant when we try to measure them, regardless of whether me make our measurements in space or on the surface of a massive body.

This is not a trivial philosophical observation. It is an observation about reality itself. The laws of physics remain everywhere the same when measured locally.

The speed of light will be measured to have the exact same value everywhere. This is because the reduced size of our rulers on the surface of massive bodies are correspondingly matched with faster clocks. There is always and everywhere exactly 1 tick of unit time for every unit distance traversed by light. It cannot logically be anything else. This in turn, affects processes of energy transfers in such a way that they too are locally measured to be unchanged.

A similar effect kicks in when we try to measure the electric force with a local set of measuring tools. The number of neutrinos in the local environment will always and everywhere affect unit length in such a way that the constant k remains constant. It is only when an outside observer looks at the measurements, using an outside ruler and outside clock that differences can be detected.

However, with two observers, one in space and one at the surface of a massive body, we can detect differences. If we beam in some light from space of a given energy intensity, it will be registered by a local observer as somewhat bluer on the surface than in space, not because any energy was accumulated on the way in from space, but because photons are measured to be bigger and more energetic by local rulers and clocks at the surface.


Photons measured by two observers, one in space and one at the surface

Photons are not hollow. They do not change in size in response to the composition of the aether. However, our unit length is the circumference of an electron, which does change in size, depending on the composition of the aether. This makes photons appear bigger to an observer at the surface, where neutrinos are fewer and rulers are shorter as a consequence.

Consequently a photon can do more work on Earth than in space. All inertial matter is smaller on the surface of our planet, and hence easier to accelerate than out in space. While this effect is tiny in the vicinity of Earth, it is relatively easy to detect close to the Sun.

Mercury, located close to the Sun, makes its rounds around the Sun faster than expected when measured with a clock on Earth. This anomaly has been known for centuries. It was a great puzzle until Einstein came along with his suggestion that clocks run faster on Mercury than on Earth, and that the anomaly is only an anomaly because of this difference. Measured with a clock on Mercury, it's all the other planets that are moving a little too slow.

This is the same conclusion we arrive at from our independent line of reasoning. We have in other words discovered an alternative to Einstein's theory. Instead of curved space-time, we have an aether with a difference in composition close to massive bodies, relative to out in space.

No comments:

Post a Comment